1,002 research outputs found

    Contrasting patterns of climatic niche divergence in Trebouxia—A alade of lichen-forming algae.

    Get PDF
    Lichen associations are overwhelmingly supported by carbon produced by photosynthetic algal symbionts. These algae have diversified to occupy nearly all climates and continents; however, we have a limited understanding of how their climatic niches have evolved through time. Here we extend previous work and ask whether phylogenetic signal in, and the evolution of, climatic niche, varies across climatic variables, phylogenetic scales, and among algal lineages in Trebouxia—the most common genus of lichen-forming algae. Our analyses reveal heterogeneous levels of phylogenetic signal across variables, and that contrasting models of evolution underlie the evolution of climatic niche divergence. Together these analyses demonstrate the variable processes responsible for shaping climatic tolerance in Trebouxia, and provide a framework within which to better understand potential responses to climate change associated perturbations. Such predictions reveal a disturbing trend in which the pace at which modern climate change is proceeding will vastly exceed the rate at which Trebouxia climatic niches have previously evolved

    Thermalization from gauge/gravity duality: Evolution of singularities in unequal time correlators

    Full text link
    We consider a gauge/gravity dual model of thermalization which consists of a collapsing thin matter shell in asymptotically Anti-de Sitter space. A central aspect of our model is to consider a shell moving at finite velocity as determined by its equation of motion, rather than a quasi-static approximation as considered previously in the literature. By applying a divergence matching method, we obtain the evolution of singularities in the retarded unequal time correlator GR(t,t)G^R(t,t'), which probes different stages of the thermalization. We find that the number of singularities decreases from a finite number to zero as the gauge theory thermalizes. This may be interpreted as a sign of decoherence. Moreover, in a second part of the paper, we show explicitly that the thermal correlator is characterized by the existence of singularities in the complex time plane. By studying a quasi-static state, we show the singularities at real times originate from contributions of normal modes. We also investigate the possibility of obtaining complex singularities from contributions of quasi-normal modes.Comment: 35 pages, 4 figure

    Quarkonium dissociation by anisotropy

    Get PDF
    We compute the screening length for quarkonium mesons moving through an anisotropic, strongly coupled N=4 super Yang-Mills plasma by means of its gravity dual. We present the results for arbitrary velocities and orientations of the mesons, as well as for arbitrary values of the anisotropy. The anisotropic screening length can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. For generic motion we find that: (i) mesons dissociate above a certain critical value of the anisotropy, even at zero temperature; (ii) there is a limiting velocity for mesons in the plasma, even at zero temperature; (iii) in the ultra-relativistic limit the screening length scales as (1v2)ϵ(1-v^2)^\epsilon with \epsilon =1/2, in contrast with the isotropic result \epsilon =1/4.Comment: 39 pages, 26 figures; v2: minor changes, added reference

    Unexpected features of branched flow through high-mobility two-dimensional electron gases

    Full text link
    GaAs-based two-dimensional electron gases (2DEGs) show a wealth of remarkable electronic states, and serve as the basis for fast transistors, research on electrons in nanostructures, and prototypes of quantum-computing schemes. All these uses depend on the extremely low levels of disorder in GaAs 2DEGs, with low-temperature mean free paths ranging from microns to hundreds of microns. Here we study how disorder affects the spatial structure of electron transport by imaging electron flow in three different GaAs/AlGaAs 2DEGs, whose mobilities range over an order of magnitude. As expected, electrons flow along narrow branches that we find remain straight over a distance roughly proportional to the mean free path. We also observe two unanticipated phenomena in high-mobility samples. In our highest-mobility sample we observe an almost complete absence of sharp impurity or defect scattering, indicated by the complete suppression of quantum coherent interference fringes. Also, branched flow through the chaotic potential of a high-mobility sample remains stable to significant changes to the initial conditions of injected electrons.Comment: 22 pages, 4 figures, 1 tabl

    On holographic thermalization and gravitational collapse of massless scalar fields

    Full text link
    In this paper we study thermalization in a strongly coupled system via AdS/CFT. Initially, the energy is injected into the system by turning on a spatially homogenous scalar source coupled to a marginal composite operator. The thermalization process is studied by numerically solving Einstein's equations coupled to a massless scalar field in the Poincare patch of AdS_5. We define a thermalization time t_T on the AdS side, which has an interpretation in terms of a spacelike Wilson loop in CFT. Here T is the thermal equilibrium temperature. We study both cases with the source turned on in short(Delta t = 1/T) durations. In the former case, the thermalization time t_T = g_t/T <= 1/T and the coefficient g_t = 0.73 in the limit Delta t <= 0.02/T. In the latter case, we find double- and multiple-collapse solutions, which may be interpreted as the gravity duals of two- or multi-stage thermalization in CFT. In all the cases our results indicate that such a strongly coupled system thermalizes in a typical time scale t_T=O(1)/T.Comment: 25 papers, 13 figures, Minor modifications, details of numerics added, references added, final version to appear in JHE

    A comparison of hospital readmission rates between two general physicians with different outpatient review practices

    Get PDF
    BACKGROUND: There has been a relentless increase in emergency medical admissions in the UK over recent years. Many of these patients suffer with chronic conditions requiring continuing medical attention. We wished to determine whether conventional outpatient clinic follow up after discharge has any impact on the rate of readmission to hospital. METHODS: Two consultant general physicians with the same patient case-mix but markedly different outpatient follow-up practice were chosen. Of 1203 patients discharged, one consultant saw twice as many patients in the follow-up clinic than the other (Dr A 9.8% v Dr B 19.6%). The readmission rate in the twelve months following discharge was compared in a retrospective analysis of hospital activity data. Due to the specialisation of the admitting system, patients mainly had cardiovascular or cerebrovascular disease or had taken an overdose. Few had respiratory or infectious diseases. Outpatient follow-up was focussed on patients with cardiac disease. RESULTS: Risk of readmission increased significantly with age and length of stay of the original episode and was less for digestive system and musculo-skeletal disorders. 28.7% of patients discharged by Dr A and 31.5 % of those discharged by Dr B were readmitted at least once. Relative readmission risk was not significantly different between the consultants and there was no difference in the length of stay of readmissions. CONCLUSIONS: Increasing the proportion of patients with this age- and case-mix who are followed up in a hospital general medical outpatient clinic is unlikely to reduce the demand for acute hospital beds

    Electrotransfer of Single-Stranded or Double-Stranded DNA Induces Complete Regression of Palpable B16.F10 Mouse Melanomas

    Get PDF
    Enhanced tumor delivery of plasmid DNA with electric pulses in vivo has been confirmed in many preclinical models. Intratumor electrotransfer of plasmids encoding therapeutic molecules has reached Phase II clinical trials. In multiple preclinical studies, a reduction in tumor growth, increased survival or complete tumor regression have been observed in control groups in which vector or backbone plasmid DNA electrotransfer was performed. This study explores factors that could produce this antitumor effect. The specific electrotransfer pulse protocol employed significantly potentiated the regression. Tumor regression was observed after delivery of single-stranded or double-stranded DNA with or without CpG motifs in both immunocompetent and immunodeficient mice, indicating the involvement of the innate immune system in response to DNA. In conclusion, this study demonstrated that the observed antitumor effects are not due to a single factor, but to a combination of factors

    The Energy Loss of a Heavy Quark Moving in a Viscous Fluid

    Full text link
    To study the rate of energy and momentum loss of a heavy quark in QGP, specifically in the hydrodynamic regime, we use fluid/gravity duality and construct a perturbative procedure to find the string solution in gravity side. We show that by this construction the drag force exerted on the quark can be computed perturbatively, order by order in a boundary derivative expansion. At ideal order, our result is just the drag force exerted on a moving quark in thermal plasma with thermodynamics variables promoted to become local functions of space and time. Furthermore, we apply this procedure to a transverse quark in Bjorken flow and compute the first-derivative corrections, namely the viscous corrections, to the drag force.Comment: 33 pages, 6 figures, references added v5: Some correction

    Thermal quenches in N=2* plasmas

    Full text link
    We exploit gauge/gravity duality to study `thermal quenches' in a plasma of the strongly coupled N=2* gauge theory. Specifically, we consider the response of an initial thermal equilibrium state of the theory under variations of the bosonic or fermionic mass, to leading order in m/T<<1. When the masses are made to vary in time, novel new counterterms must be introduced to renormalize the boundary theory. We consider transitions the conformal super-Yang-Mills theory to the mass deformed gauge theory and also the reverse transitions. By construction, these transitions are controlled by a characteristic time scale \calt and we show how the response of the system depends on the ratio of this time scale to the thermal time scale 1/T. The response shows interesting scaling behaviour both in the limit of fast quenches with T\calt<<1 and slow quenches with T\calt>>1. In the limit that T\calt\to\infty, we observe the expected adiabatic response. For fast quenches, the relaxation to the final equilibrium is controlled by the lowest quasinormal mode of the bulk scalar dual to the quenched operator. For slow quenches, the system relaxes with a (nearly) adiabatic response that is governed entirely by the late time profile of the mass. We describe new renormalization scheme ambiguities in defining gauge invariant observables for the theory with time dependant couplings.Comment: 78 pages, 17 figure
    corecore